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Presented here is an algorithm tailored to solve the radial Schriidinger equation for the case 
of proton scattering from an optical potential. The algorithm is straightforward to use and 
results in a significant increase in speed, around a factor of 2 at least, over the conventional 
Numerov algorithm. 0 1987 Academx Press, Inc 

Integration of radial Schrodinger equations and their ilk has received much 
attention in the last few years. In the interest of brevity, the reader is referred to the 
references in Ref. [l et seq.]. 

The Schrodinger equation, and also many other equations in physics, may be 
reduced to the form 

Y”(X) = f(x) Y(X)> (1) 

where x is some dimensionless parameter. Often y(x) will be a column vector of 
functions andf(x) a square matrix, in which case Eq. (1) represents a set of coupled 
equations. There are many algorithms available for solving Eq. (l), and some 
justification is required before presenting yet another. The algorithm presented here 
is especially useful for doing optical model fits to proton elastic scattering data. 
Such fits entail solving Eq. (1) many times over with slightly different parameters 
each time. Any gain in speed is quite desirable since it can save several hours of 
computer time. We have two goals in mind in this work: to develop an algorithm 
which is both simple to implement and which allows a significant gain in speed over 
a modification of the Numerov method due to Raynal [2, 31 Raynal’s algorithm is 
chosen here as a standard since it appears to be the simple, most widely used 
algorithm, to date, for the optical model problem. 

The method, hereafter referred to as the enhanced Numerov algorithm (ENA), is 
presented and tested here in the context of high-energy proton scattering in the 
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optical model; however, the algorithm is appropriate for any system of equations 
(1) which have the property: 

Y(X) f’(x) 4 f(x) Y’(X). (21 

In the optical model examplef(x) is of the form 

j-(x)=(-l+C(r)+yq 
x = kr, I=O, 1, 2 ,...) (3b) 

where k is the wave vector in the center-of-mass frame and r is the radius coor- 
dinate. We note that the Dirac equation for protonnucleus scattering may also 
always be reduced to the form in Eq. (1). 

To solve the scattering problem, all that is needed is the regular solution to 
Eq. (1) at two points, called the matching radii, at a large enough value of x so that 
the potential U(r) has become negligible. Phase shifts are then extracted 
matching to appropriate asymptotic forms (Bessel functions or Coulomb functions). 
The algorithm presented here is for obtaining just these two points, although 
extraction of the complete wave function is quite straightforward. 

THE ENHANCED NUMEROV METHOD 

Using Taylor’s expansions for y(x) andf(x) it is straightforward to show that (1) 
implies 

y(x i- h)( 1 - T(x + h)) +y(x - h)( 1 - T(x- h)) - (2 + lOT(x)) y(x) 

=;m!, “2m~‘2m’bPP$ 3K-ml 
(43 

where 

The usual prescription [4] is to notice that the r.h.s. of Eq. (4) is o(h6) and may be 
neglected if h is small enough. 

It has been pointed out [ 1 ] that if we approximate f(x) by its asymptotic form 
(i.e., - l), then the series on the r.h.s. of Eq. (4) may be summed exactly. In practice 
this device allows a large step size when the potentials are very weak and l/x is 
small. However, if the potentials are weak, then, since nuclear potentials drop 
exponentially for large x, we are close to the matching radii and there is little more 
integration to do. If the potentials are not weak, then the modification gives little 
improvement, in fact if Z # 0 then f(x) will change sign for small x, and for these 
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values the correction actually worsens the algorithm. However, in the case of elec- 
tromagnetic potentials which do not drop exponentially, there is a large region 
where this modification gives a sign&ant increase in speed over the Cowell 
method [4]. 

The next logical step is to calculate the r.h.s. of Eq. (4) at each point by assuming 
that f(x) is slowly varying compared to J(X). By this we mean 

f’“‘(x) y’“‘(x) q’“‘(x) y’“‘(x), m > n. (6) 

In our optical model example, y(x) N sin(x + . ..). so differentiating y(x) with respect 
to x is going to leave it of the same order and magnitude. We takef(x) to be the 
Fermi form 

(7) 

where R is taken to be 5 fm and a is around 0.6 fm. The approximation is expected 
to be at its worst around the nuclear surface, where this function is most rapidly 
varying. 

Successive uses of Eqs. (6) and (1) lead us to the approximation: 

Y’2”‘b) = (.f(x)Y Y(X). (8) 

By using Eq. (8) to approximate the terms of the r.h.s. of Eq. (4) we can analytically 
sum the series and obtain a formula which is exact whenever f(x) is locally con- 
stant. If, following Numerov [4], we define 

w(x) = (1 - T(x)) Y(X), (9) 

then we obtain the formula 

w(x + h) + w(x - h) = (2 cash JTzT(x)) w(x). (10) 

In Eq. (10) T is a small quantity and we may do a power series expansion, keep- 
ing only terms o(h4) to get 

w(x + h) + w(x + h) = (2 + 12T(x) + 12T(~)~) w(x). (11) 

This constitutes what we refer to as Raynal’s algorithm, although Raynal’s original 
derivation is somewhat different; Raynal took the Numerov formula [IS], 

(12) 

and expanded the denominator in powers of T(X), keeping the first 2 powers of 
T(x) to obtain Eq. (11). The formula (10) has the property that it is correct to 
order h6 for all f(x)‘s, and is exact whenever f(x) is locally constant. 
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NUMERICAL TESTS 

Numerical tests have been performed on Eq. (10) for values of 1 between 0 and 
100, and also for U, = 0, 0.4, 4, which in the optical model example would corres- 
pond to proton scattering with energies of - co, 125, and 12 MeV from a 50 
potential. As a criterion to judge the algorithm we considered what step size was 
required to produce a relative error 10P6 in the final phase shifts. In all cases, not 
just the smallest value of U, the ENA allowed the step size to be increased by a fac- 
tor of 3 over the Raynal algorithm. Often the algorithm allowed an increase of a 
factor of 5. By testing the accuracy of Eq. (10) on a point-by-point basis we found 
that (10) offered no improvement whatsoever over Raynal’s algorithm until we 
reached the classical turning point, T(x) =O; thus we propose using Raynal’s 
algorithm up to the turning point and Eq. (10) from then on. This proposal con- 
stitutes what we refer to as the enhanced Numerov algorithm. 

There is one drawback to this algorithm which is important for partial waves 
which have I= 1. At the original Raynal algorithm must be modified since 
lim ,+0f(~) y(x) does not vanish. In the Raynal method this is accomplished in an 
approximate way by assuming y(x) to be a parabola. For a given step size this 
introduces an error which turns out to be of the same order of magnitude as the 
error margin using the Raynal method over the range of integral. Since our metho 
for a given step size, is significantly better there, then we must start our integration 
more carefully using a spherical Bessel-like lit to the function to obtain the value of 
lim .~ _ a f(x) v(x). We would like to also add the caveat that the I= 0 partial waves 
will have a problem self-starting if the potential is irregular at the origin; however, 
with a suitable parametrization this can always be avoided. 

Figure 1 shows the accumulation of error for the case U, = 0.4, I= 4, k = 2.5. The 
curves shown reflect the errors in the phase of the wave function accumulated as the 

lo-* 

0 2 4 6 8 10 12 14 

r 04 

FIG. 1. The accumulation of error in the phase of the wave function as the outward integration is 
done. The solid curves are calculated using the ENA, the dashed curves with Raynal’s algorithm. The 
upper two curves are calculated using a step size (dx) of 0.1875, the lower two curves with a step size a 
third as big, 0.0625. 
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outward integration is done, using two step sizes, h = 0.0625 and 0.1875. The solid 
curves are obtained using the ENA, with the same step size both inside and outside 
the turning point. The dashed curves are the result of using the Raynal algorithm 
everywhere. The Raynal algorithm appears to be accumulating less error at large 
distances than near the turning point; however, this is an artifact of using a 
logarithmic scale. The ENA does not appear to introduce an error at all into the 
phase once the turning point is passed, and this leads one to suspect that the step 
size in this region may be larger than absolutely necessary. A method for doubling 
the step size is called for, and this requires an estimate of the local error. This is dis- 
cussed later. We have not closely examined step size doubling, as it conflicts with 
one of our philosophies in this paper, namely simplicity. 

We are left with one problem, namely that while Eq. (10) is straightforward, it 
involves a square root and a hyperbolic cosine evaluation at each step. Since T(x) 
in general will be complex, this entails many machine operations which will slow 
the integration down significantly. Specifically on a VAX 8600 the ENA has 
roughly six times as many operations per step as the Raynal algorithm, meaning 
that the new algorithm as indicated in Eq. (10) is actually slower. However, we do 
not have to work this hard to evaluate the r.h.s. of Eq. (10). 

Since T(x) is small, of order h2, we may evaluate the hyperbolic cosine by a 
power series. Specifically, if we define 

then 
S(x) = 12T(x) = h2f(x), 

2 3 4 

cosh,,& l+$+$+$+$,.--. 
. . 

(13) 

(14) 

In practice keeping just the first 5 terms in Eq. (14) is sufficient. We note here the 
connection with the Raynal algorithm (Raynal # 1) which is obtained by taking 
just the first 3 terms in Eq. (14). We must now evaluate a polynomial of a complex 
variable with real coefficients. There exists an algorithm [6] for doing this very 
quickly. Specifically, if 

f(s)=c,s”+c,~,s”-‘+ ... +c, (15) 

let 
r=S+S, m=SS 

a,=c II> bl=C,-1; 

then define by recurrence 

and we get 

aj=bj~l+ral-, 

bj=c,-j-ma,~, 

f(S) = Sa, + b,. 

(16) 

(17) 

(18) 
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Equation (14) can be evaluated in 16 multiplications and 9 additions. If one is 
prepared to lose a little simplicity, then we note here that if 
cash m is expanded in a Taylor series around cash dm, only terms of 
order AS= S( co) - S(x) to the third power need be kept, resulting in a 10% 
further speed gain. However, for simplicity we ignore this and discuss (13). Each 
step now takes some 50% longer than that of the algorithm due to Raynal. Ailow- 
ing for the integration being inside the turning point almost one-third of the time 
(where we use the simple Raynal algorithm), we find a gain in speed of more than a 
factor of 2. 

We have recently become aware of a similar algorithm due to Raynal [7], 
whereby the real part of S is kept in the S3 term in Eq. (14). If the potentials used 
are real this algorithm gives errors that are, typically, only about a factor of 2 larger 
than ENA. However, if the potentials are complex (as would happen for 5QQ 
proton scattering from 90Zr, for example) then keeping this imaginary part is very 
important. Shown in Fig. 2 is such a comparison for the I= 9 partial wave, using a 
potential Vo=2.5 + 2.5i, k= 5, R= 5, a=0.65, and a step size Ar=O.12§ 
(Ax = 0.725). The curve labelled Raynal # 1 is the algorithm as given in Eq. (l4), 
Raynal #2 is with the (real part of the S)3 term correction and the Raptis/Aliison 
algorithm is also shown for comparison. ENA is the most accurate algorithm by 
about a factor of 10. 

ERROR ESTIMATION 

Figure 1 has a rather eye-catching feature, namely that the two solid curves are 
parallel to each other. This is also true for the two dashed curves. Curves being 
parallel to each other on a logarithmic scale differ by an overall multiplicative con- 
stant which, in this case, is close to 81. Since the curves are computed with step 
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FIG. 2. The error accumated using the four algorithms explained in the text. The step size here 1s 
AT = 0.125 (dn = 0.725). The classical turning point is near I = 1.8. 
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sizes in the ratio of 1 : 3 this factor of 81 reflects the error at each point being 
proportional to h4. For the Numerov algorithm this was pointed out, and proved, 
by Melkanoff et al. [3]. It turns out that the error at each point is actually given by 
a4h4 + a@ + ... for both algorithms, and this is exactly the circumstance where 
Richardsonian extrapolation is expected to work. In practice we have found it 
possible to easily obtain machine-limited precision (32 figures on the TRIUMF 
VAX 11/780) using Richardsonian extrapolation on both the Raynal algorithm and 
the ENA. If one is interested in phase shifts which are accurate to 10 figures or 
more, then we highly recommend this procedure. However, we set ourselves the 
goal in this paper of obtaining phase shifts accurate to only 6 figures, and it turns 
out here that the amount that the Richardsonian extrapolation allows the step size 
to be increased is almost offset by the need to do the calculation several times. In 
light of the additional complexity involved with the extrapolation we do not recom- 
mend it here. 

The local error in this method may be estimated as follows. There are two 
sources of local error and both should be calculated; the local error estimate being 
the larger of the two. The first source of error, and for the optical model problem 
discussed earlier the dominant one, is the error associated with f(x) not being 
constant. This error may be estimated as follows. 

dw =; eP’(x) - VW3 v(x)1 

=~mm) Y’(X). 

(19) 

This is easily estimated by simple numerical differentiation. The second source of 
error is due to the truncation of the series in Eq. (14). This error is trivially 
estimated to be the first neglected term. 

We do not have any estimates concerning the global error in the method (for 
fixed step size), however we point out that in Fig. 1 there is a rather convincing 
numerical demonstration that it is going as h4. This we have confirmed numerically 
by the success of Richardsonian extrapolation to great accuracy. 

DERIVATIVE FORMULA 

Often a derivative of the function y(x) will be needed. Following a very similar 
derivation to Eq. (lo), we can obtain a derivative formula accurate to o(h4) 
everywhere and which is exact wheneverf(x) is locally constant. The formula is: 

J?,(‘)=(1-2T(r+h))y(v+h)-(l-2ilTr-h))y(r--h) 
(h/3)(6 - S)(sinh ,,/%/fi) 

Again the hyperbolic sine may be expanded in powers for fast evaluation. 

(21) 
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In summary, we have presented an algorithm which is straightforward to 
implement. It requires a uniform step size and results in a gain in speed of at least a 
factor of 2 over the simple Raynal algorithm. 

We would like to thank J. Comfort and B. K. Jennings for useful comments. 

REFERENCES 

1. A. RAPTIS AND A. C ALLISON, Comput. Phys. Commun. 14, 1 (1978). 
2. J. RAYNAL, Optical Model and Coupled Channel Calculations in Nuclear Physics, Trieste, 1971 and 

IAEA, Vienna, 1972. 
3. M. A. MELKANOFF, T. SAWADA, AND J. RAYNAL, Meth. Comput. Phys. 6, 1 (1966). 
4. P. H. COWLL AND A. C. D. CROMELIN, Appendix to Greenwhich Observatory for 1909, p. 62, 

Edingburgh, 1910. 
5. B. V. bkJMEROV, Mont. Not. R. Astron. Sot. 84, 592 (1924). 
6. Nord. Tzdskr. Informationsbehandl. 5, 142 (1965). 
7. J. RAYNAL, private communication. 


